Optimization on Submanifolds of Convolution Kernels in CNNs
نویسندگان
چکیده
Kernel normalization methods have been employed to improve robustness of optimization methods to reparametrization of convolution kernels, covariate shift, and to accelerate training of Convolutional Neural Networks (CNNs). However, our understanding of theoretical properties of these methods has lagged behind their success in applications. We develop a geometric framework to elucidate underlying mechanisms of a diverse range of kernel normalization methods. Our framework enables us to expound and identify geometry of space of normalized kernels. We analyze and delineate how state-of-the-art kernel normalization methods affect the geometry of search spaces of the stochastic gradient descent (SGD) algorithms in CNNs. Following our theoretical results, we propose a SGD algorithm with assurance of almost sure convergence of the methods to a solution at single minimum of classification loss of CNNs. Experimental results show that the proposed method achieves state-of-the-art performance for major image classification benchmarks with CNNs.
منابع مشابه
Optimization on Product Submanifolds of Convolution Kernels
Recent advances in optimization methods used for training convolutional neural networks (CNNs) with kernels, which are normalized according to particular constraints, have shown remarkable success. This work introduces an approach for training CNNs using ensembles of joint spaces of kernels constructed using different constraints. For this purpose, we address a problem of optimization on ensemb...
متن کاملConvolutional Neural Networks vs. Convolution Kernels: Feature Engineering for Answer Sentence Reranking
In this paper, we study, compare and combine two state-of-the-art approaches to automatic feature engineering: Convolution Tree Kernels (CTKs) and Convolutional Neural Networks (CNNs) for learning to rank answer sentences in a Question Answering (QA) setting. When dealing with QA, the key aspect is to encode relational information between the constituents of question and answer in learning algo...
متن کاملDesign of Kernels in Convolutional Neural Networks for Image Classification
Despite the effectiveness of Convolutional Neural Networks (CNNs) for image classification, our understanding of the relationship between shape of convolution kernels and learned representations is limited. In this work, we explore and employ the relationship between shape of kernels which define Receptive Fields (RFs) in CNNs for learning of feature representations and image classification. Fo...
متن کاملHyperNetworks with statistical filtering for defending adversarial examples
Deep learning algorithms have been known to be vulnerable to adversarial perturbations in various tasks such as image classification. This problem was addressed by employing several defense methods for detection and rejection of particular types of attacks. However, training and manipulating networks according to particular defense schemes increases computational complexity of the learning algo...
متن کاملHypernetworks with Statistical Filtering for Defending Adversarial Examples
Deep learning algorithms have been known to be vulnerable to adversarial perturbations in various tasks such as image classification. This problem was addressed by employing several defense methods for detection and rejection of particular types of attacks. However, training and manipulating networks according to particular defense schemes increases computational complexity of the learning algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.07008 شماره
صفحات -
تاریخ انتشار 2016